ИЗВЕСТИЯ ВУЗОВ № 6, 2012

Жумалиев Т.Ж.

О и- ПОЛНЫХ ОТОБРАЖЕНИЯХ

T.J. Jumaliev

ON THE μ - COMPLETE MAPPING

УДК: 515.12

В этой статье изучаются й- полнота и y,- пополнение равномерно непрерывных отображений, а также их свойства.

Regular spaces u-completeness and u-completion as well as regular representation of reflection and invariants, in this article.

Приводим некоторые необходимые для дальнейшего изложения понятия топологических и равномерных пространств.

Пусть (X, U)- равномерное пространство, а \mathcal{F} - фильтр в X. Фильтр \mathcal{F} называется фильтром Коши в (X, U), если $\alpha \cap \mathcal{F} \neq \emptyset$ для любого $\alpha \in U$.

Пусть (X, τ) - топологическое пространство. Фильтр $\mathcal F$ в X называется фильтром окрестностей точки x в (X, τ) , если внутренность каждого элемента фильтра $\mathcal F$ содержит точку x. Говорят, что фильтр $\mathcal F$ сходится в (X, τ) к точке x, если $\mathcal F$ сильнее, чем фильтр окрестностей точки x, т.е. любой элемент фильтра $\mathcal F$ является окрестностью точки x. Фильтр $\mathcal F$ в равномерном пространстве (X, U) называется сходящимся к точке $x \in X$, а точка x- пределом фильтра $\mathcal F$, если он сходится к точке $x \in X$ в (X, τ_U) . Точка $x \in X$ называется точкой прикосновения фильтра $\mathcal F$ в (X, U), если x является точкой прикосновения каждого элемента фильтра $\mathcal F$ в (X, τ_U) , где (X, τ_U) -топологическое пространство, порожденное равномерным пространством (X, U).

Равномерное пространство называют полным, если всякий фильтр Коши в нем сходится.

Пусть (X, U)- произвольное равномерное пространство а μ - некоторое кардинальное число. Через $\omega(U)$ обозначим вес равномерного пространства (X, U).

ОПРЕДЕЛЕНИЕ (А.А. Борубаев). Равномерное пространство (Z,U) называется μ - полным, если всякий фильтр Коши F, имеющий базуB мощностью $|B| \le \mu$ сходится, где $\tau = \omega(U)$ и $\aleph_0 \le \mu \le \tau$.

ОПРЕДЕЛЕНИЕ (А.А. Борубаев). Равномерное пространство $(\mathcal{X}_{\mu}, \mathcal{D}_{\mu})$ называется μ - пополнением равномерного пространства (\mathcal{X}, U) , если:

- 1) $X \subset \tilde{X}_{\omega}$;
- 2) $(X, \tau_{\widetilde{U}})$ всюду плотно в $(\tilde{X}_{\widetilde{U}}, \tau_{\widetilde{U}_{\widetilde{U}}});$
- 3) $(\tilde{X}_a, \tilde{U}_a)$ μ полное равномерное пространство.

О μ - полноте и μ - пополнении равномерных пространств, было изучено и исследовано статье [4]. Рассмотрим о μ - полноте и μ - пополнении равномерно непрерывных отображений.

Пусть $f:(X,U) \to (Y,V)$ - равномерно непрерывное отображение. Если $\mathcal F$ фильтр Коши, имеющий базу $\mathcal B$ мощностью $|\mathcal B| \le \mu$ в (X,U), то $f\mathcal F = \{fF: F \in \mathcal F\}$ является фильтром Коши имеющий базу, мощностью

ИЗВЕСТИЯ ВУЗОВ № 6, 2012

 $\leq \mu$ в(Y,V). База фильтра Коши $f\mathcal{F}$ мощностью $\leq \mu$, сходится к точке $y \in Y$, если для всякой окрестности \mathcal{O}_Y точки унайдется $f\mathcal{F} \in f\mathcal{F}$ такой, что $f\mathcal{F} \subset \mathcal{O}_Y$.

ОПРЕДЕЛЕНИЕ (А.А. Борубаев). Пусть $f:(X,U)\to (Y,V)$ - равномерно непрерывное отображениеравномерного пространства (X,U) в равномерное пространство (Y,V)называется \mathfrak{g} - полным, если всякий фильтр Коши \mathcal{F} , имеющий базу мощностью $\leq \mu \mathfrak{g}(X,U)$, для которого $f\mathcal{F}$ сходится в (Y,V), сходится в (X,U).

Рассмотрим следующий квадрат категории *Unif*:

$$(X, U) \stackrel{i_X}{\rightarrow} (X_{\mu}, U_{\mu})$$

$$f \perp \downarrow f_{\mu}$$

$$(Y, V) \stackrel{i_Y}{\rightarrow} (Y_{\mu}, Q_{\mu}),$$

где $(\widehat{X}_{\mu},\widehat{U}_{\mu})$ и $(\widehat{Y}_{\mu},\widehat{V}_{\mu})$ - μ - пополнения равномерных пространств(X,U) и (Y,V), соответственно, f_{μ} равномерно непрерывное продолжение f на $(\widehat{X}_{\mu},\widehat{U}_{\mu})$ и $(\widehat{Y}_{\mu},\widehat{V}_{\mu})$, соответственно, а $:_X$ и $:_Y$ - тождественные равномерные вложения равномерных пространств (X,U) и (Y,V) в $(\widehat{X}_{\mu},\widehat{U}_{\mu})$ и $(\widehat{Y}_{\mu},\widehat{V}_{\mu})$, соответственно. Можно видеть, что квадрат является коммутативным.

ТЕОРЕМА 1. Для равномерно непрерывного отображения $f:(X,U) \to (Y,V)$ равномерного пространства (X,U) на равномерное пространство (Y,V) следующие условия равносильны:

- Отображение f µ полно;
- 2) $f_u(\mathcal{R}_u \setminus X) = \mathcal{P}_u \setminus Y;$
- Квадрат декартов в категории Unif.

ДОКАЗАТЕЛЬСТВО.1) \to 2). Пусть $f\colon (X,U)\to (Y,V)$ - μ - полное отображение, а $y\in Y_{\mu}\backslash V$. Тогда $y\in Y$. Пусть $x\in X$ - такая точка, что $f_{\mu}(x)=y$. Если $x\in X$, то $x\in X_{\mu}\backslash X$ и $y\in f_{\mu}(X_{\mu}\backslash X)$. Включение $f_{\mu}(X_{\mu}\backslash X)\subset Y_{\mu}\backslash Y$ доказано.Предположим, что $x\in X_{\mu}\backslash X$. Через $\mathcal F$ обозначим след на X фильтра окрестностей точки x. Тогда $\mathcal F$ - фильтр Коши,имеющий базу B мощностью $|B|\leq \mu$ в (X,U). Если его образ $f\mathcal F$ -сходится k точке k0 точке k1. Но по определению фильтра k2, он не имеет предела k3. Пришли k4 противоречию. Поэтому единственно возможно k2 и включение k3 k4. Пришли k4 противоречию. Поэтому единственно возможно k6 и включение k6 k7 и включение k8 оказано.

2) \rightarrow 3). Пусть $f_{\mu}(\hat{X}_{\mu} \setminus X) \subset Y_{\mu} \setminus V$, $\varphi \colon (Z,W) \to (Y,V)$ и $\psi \colon (Z,W) \to (\hat{X}_{\mu} \setminus X)$ такие равномерно непрерывные отображения, что $i_{Y} \circ \varphi = f_{\mu} \circ \psi$. Учитывая, что i_{X} и i_{Y} - тождественные равномерные вложения, $i_{Y}(\varphi(Z))$ содержится в Y_{μ} . Из вложения $f_{\mu}(\hat{X}_{\mu} \setminus X) \subset Y_{\mu} \setminus Y$ и равенства $f(\psi(Z)) = i_{Y}(\varphi(Z))$ следует, что $\varphi(Z) \subset X$. Определим отображение $h \colon Z \to X$ по правилу $h(z) = \psi(z)$ для любого $z \in Z$. По определению отображения h, имеем $\psi = i_{X} \circ h$ и $\varphi = f \circ h$. Покажем, что $h \colon (Z,W) \to (X,U)$ равномерно непрерывно. Так как на $\varphi(Z)$ равномерности U и U_{μ} индуцируют одинаковую равномерность, то из равномерной непрерывности отображения ψ следует равномерная непрерывность отображения h. Единственность отображения h следует из его определения. Следовательно, квадрат декартов в категории Unif.

3) \to 1). Пусть квадрат декартов в категории *Unif*, а \mathcal{F} - фильтр Коши имеющий базу мощностью $\leq \mu$ в (X,U) такой, что $f\mathcal{F}$ сходится к точке $y\in Y$ в (Y,V). Тогда фильтр Коши \mathcal{F} имеющий базу мощностью $\leq \mu$ в (X,U) является базисом фильтра в (X_μ,U_μ) и поэтому сходится к некоторой точке $x\in X_\mu$. Покажем, что $x\in X$. Рассмотрим одноточечное равномерное пространство $\mathcal{Z}=\{x\}$ с тривиальной равномерностью \mathcal{W} . Введем отображение $\varphi\colon (\mathcal{Z},\mathcal{W})\to (Y,V)$ и $\psi\colon (\mathcal{Z},\mathcal{W})\to (X_\mu,U_\mu)$ так, чтобы $\varphi(x)=y$ и $\psi(x)=x$. Так как $f_\tau(x)=y$ то $i_X\circ\varphi=f_\pi\circ\psi$. Поэтому существует единственно отображение $h\colon (\mathcal{Z},\mathcal{W})\to (X,U)$ такое, что $\psi=i_X\circ h$ и $\varphi=f\circ h$. Но $i_X(h(x))=\psi(x)$, $x\in X$, т.е. \mathcal{F} - фильтр Коши имеющий базу мощностью $\leq \mu$ сходится в (X,U) и равномерно непрерывное отображение $f\colon (X,U)\to (Y,V)$ - μ - полно. Теорема доказано.

ОПРЕДЕЛЕНИЕ. Пусть $f:(X,U) \to (Y,V)$ - равномерно непрерывное отображение равномерного пространства (X,U) в равномерное пространство (Y,Y). Равномерно непрерывное отображение $f:(\hat{X},\hat{U}) \to (Y,V)$ равномерного пространства (\hat{X},\hat{U}) в равномерное пространство (Y,V) называется μ - пополнением отображения f, если выполняются следующие условия:

ИЗВЕСТИЯ ВУЗОВ № 6, 2012

- 1) Равномерное пространство (X, U) есть всюду плотное подпространство равномерного пространства (\hat{X}, \hat{U}) ;
 - $2) f = \hat{f}|_{Y};$
 - 3) Отображение \hat{f} является μ полным.

ТЕОРЕМА 2.Всякое равномерно непрерывное отображение $f:(X,U) \to (Y,V)$ равномерного пространства (X,U) в равномерное пространство (Y,V) имеет единственное, с точностью до равномерного изоморфизма, μ -пополнение.

ДОКАЗАТЕЛЬСТВО. Пусть $(\hat{X}_{\mu}, \hat{U}_{\mu})$ и $(\hat{Y}_{\mu}, \hat{V}_{\mu})$ - μ - пополнения равномерных пространств (X, U) и (Y, V), соответственно, а $f_{\mu}: (\hat{X}_{\mu}, \hat{U}_{\mu}) \to (\hat{Y}_{\mu}, \hat{Y}_{\mu})$ - единственное равномерно непрерывное продолжение отображения f. Положим $\hat{X} = f_{\mu}^{-1} Y$ и $\hat{f} = f_{\mu} |_{\hat{X}}$. Тогда $X \subseteq \hat{X}$ и $\hat{f}|_{X} = f$. Пусть \hat{U} - равномерность на \hat{X} , индуцированная равномерностью \hat{U}_{μ} . Тогда очевидно, что отображение $\hat{f}: (\hat{X}, \hat{U}) \to (Y, V)$ является равномерно непрерывным. Равномерное пространство $(\hat{X}_{\mu}, \hat{U}_{\mu})$ является μ - пополнением пространства (\hat{X}, \hat{U}) , и из единственности отображения f_{μ} следует, что отображение \hat{f} является единственным равномерно непрерывным продолжением отображения f на пространство (\hat{X}, \hat{U}) имеем $f_{\mu}(\hat{X}_{\mu} \setminus X) \subseteq \hat{Y}_{\mu} \setminus Y$. Тогда, отображение \hat{f} - μ - полно.

Литература:

- 1. Энгелькинг Р. Общая топология, Москва: Мир, 1986.
- 2. Борубаев А.А.Равномерные пространства и равномерно непрерывные отображения. Фрунзе: Илим, 1990.
- 3. Борубаев А.А., Чекеев А.А. Равномерные пространства. Бишкек: Учкун, 2003.
- 4. Жумалиев Т.Ж. О јі- полных и ц- пополнениях равномерных пространств. Бишкек: Известия НАН КР, 2012.

Рецензент: д.ф.-м.н., профессор Туганбаев У.М.