Кемелов К.А., Самбаева Д.А., Майменов З.К.

ИЗУЧЕНИЕ СИСТЕМЫ С-H₂O-O₂ ПРИ РАЗЛИЧНЫХ СООТНОШЕНИЯХ ВОДЫ С ЦЕЛЬЮ СНИЖЕНИЯ КОНЦЕНТРАЦИИ САЖИ В ГАЗОВОЙ ФАЗЕ

K.A. Kemelov, D.A. Sambaeva, Z.K. Maymekov

INVESTIGATION OF THE C-H₂O-O₂ SYSTEM AT DIFFERENT RATIOS OF WATER TO REDUCE THE CONCENTRATION OF THE SOOT IN THE GAS PHASE

УДК 662.9593:621

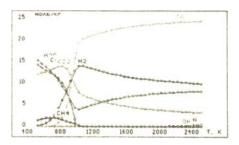
В статье приведены результаты физико-химического моделирования системы: С-H₇0-0: в широких Пределах изменения температуры и соотношения воды в газожидкостных потоках при максимуме энтропии системы.

The results of physico-chemical modeling of the C-Hfi-Oi system were defined in a wide range of temperature and ratios of water in gas-liquid flow at the maximum value of entropy.

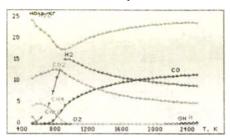
Введение.

В настоящее время сажа представляется в виде твердого углеводорода с определенным соотношением углерода и водорода, или же в виде твердого углерода, т.е. в этом вопросе до сих пор имеются различные точки зрения [1-3]. Поэтому, с целью выяснения данного положения, сначала нами были проведены термодинамические расчеты в широких пределах изменения температуры и соотношения газо-жидкостных потоков при максимуме энтропии системы: С-Н20-02. Установлены спектры концентрационного распределения С, Н, О-содержащих активных частиц и молекул, а также конденсированных фаз (Ст) в газовой фазе, образующихся при сжигании жидкого топлива и водотопливных эмульсий в котолоагрегатах средней и малой мощности типа ДКВР-4/13. В результате проведенных исследований отмечено образование конденсированного углерода в газовой фазе и достигнуто существенное снижение величины ущерба техногенной сажи за счет модифицирования и сжигания топлива в виде водотопливных эмульсий.

Экспериментальная часть.


Экспериментальное определение содержания техногенной сажи в газовой фазе проводилось гравиметрическим методом, а также на основе мультифункционального газоанализатора Visit 01-L/LR, который был использован для определения физикохимических параметров (t_n $t_{,,,}$ $p_{,,}$ AQ, $t_{,p}$) дымовых газах. Для измерения содержания твердых частиц (сажи) в газоанализаторе встроен отдельный зонд, что и предотвращает попадания случайных загрязнений в корпус датчика. Соответственно, прибор позволил определить фоновую и рабочую концентрацию определяемых компонентов в основном потоке дымовых газов. Наряду с концентрацией газа осуществлено непосредственное измерение температуры дымовых газов. Здесь, следует заметить, что физикохимический анализ сажевых частиц в газовых выбросах проводили до и после осуществления природоохранных мероприятий с учетом метеорологических параметров, определяющих условия и уровень загрязнения приземного слоя атмосферного воздуха над территорией котельной. При физикохимическом моделировании системы[4]: углеродвода-кислород были использованы термодинамические данные, основанные на принципе максимуме энтропии, что и позволили получить информацию об энергетических и концентрационных характеристиках компонентов. Рассчитан равновесный состав системы: углерод-вода кислород и выявлены изменения свойств компонентов, в том числе конденсированного углерода.

Обсуждение результатов.


С целью рассмотрения выгорания углеродистых частиц в среде кислород-вода нами была рассмотрена модельная система: С-Н₂0-0₂ в пределах изменения температуры от 500 до 2500 К, давлении 0,1 МПа и соотношении воды от одного до пяти моль/кг по отношении углерода и кислорода в системе. Соответственно, найдены равновесные составы и концентрации компонентов, образующихся в газовой фазе при различных соотношениях исходных компонентов (рис.1-3) и выявлены изменения энергетических и вязкостных свойств системы (табл. 1-3). На основе анализа полученных результатов можно указать образования сажи из углеводородов и ее выгорания при взаимодействии с диоксидом углерода и водяным паром, содержащимися в продуктах сгорания, или кислородом при его подмешивании к первичным продуктам сгорания. Показано, что сажеобразован ие из углеводородов может протекать при высоких температурах. Сажа образуется вследствие полимеризации радикалов с кольцевой структурой и молекул в многоядерные соединения и их последовательной дегидрогенизацией; при температурах выше 1800 К наблюдается разрушение молекул углеводородов с образованием низкомолекулярных соединений и радикалов, из которых в дальнейшем образуются частицы сажи.

Проведенные нами термодинамические расчеты равновесного состава продуктов сгорания свидетельствуют о возможности появления твердого углерода согласно реакции

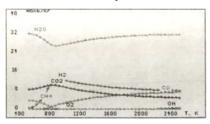

 $C_mH_n^++yO_2 \rightarrow 2yCO + (m-2y)$ С при m>2y и написать схему газификации сажи: $C_mH_n \rightarrow C_xH_y + H_2$; $C_xH_y + (x/2)$ O_2 →xCO + (y/2) H_2 ; $2H_2 + 0_2$ 与 $2H_2O$; $CO+H_2O$ 与 CO_2+H_2 ; C_xH_y+nC → $(n+x)C+(y/2)H_2$; C_xH_y+CO + C_xH_y+C + $C_$

Рис.1. Равновесные составы и концентрации компонентов, образующихся в системе C-H₂0-CЪ (1:1:1), C-27,752; H-37,006; 0-39,337 при P=0,1 Мпа

Рис.2. Равновесные составы и концентрации компонентов, образующихся в системе C-H₂O-O₃ (1:3:1), C-16,651; H-66,610; 045,806 при P=0,1 Мпа

Рис.3 .Равновесные составы и концентрации компонентов, образующихся в системе C-H₂0-0₂ (1:5:1), C-11,894; H-79,298; 0-48.578 при P=0,1 $M\Pi a$

Расчетные данные показали, что при сжигании углеводородов роль промежуточных ароматических соединений в сажеобразовании незначительна, определяющим является ацетиленовый механизм образования и роста радикалов-зародышей: СпНп, — * $C_2H_2 \rightarrow * C4H4 \rightarrow C_4H_2 - * C6H_2 \rightarrow C*H_2...-*$ сажа.

В зонах пламени, предшествующих началу саже-выделения, действительно обнаруживаются ацетилен и его высшие производные, т.е. термическая деструкция ацетилена в пламенях происходит со значительным образованием вначале винилацетилена, затем диацетилена и полиацетиленов. Содержание соединений основные: СН₄, СО₂, Н₂О, СО, Н, Н₂, С(с), С и угле-водородные частицы и радикалы: О, O₂, OH, HO₂, H₂O₂, C₂O, C₃O₂, CH, CH₂, CH₃, C₂H, C2H2, C2H3,C2H4,C2H5,C2H6,C3H6, C3H8, C4H10, C6H6, CHO,CHO2, CH2O,CH2O2, CH3O, CH4O, С2Н4О2, С3Н6О, С4Н8О, С2Н2О) в газовой фазе включают и промежуточные продукты процессов полимеризации и дегидрогенизации, на основе которых образуется сажа. Таким образом, термодинамические расчеты равновесного состава продуктов сгорания свидетельствуют о возможности появления конденсированного углерода (Сс) в газовой фазе (рис.1 -3).

Осуществлен анализ эмиссии техногенной сажи и составлены их расчеты. Определены экологические и производство-хозяйственные стандарты котлоагрегатов средней и малой мощности и рассчитаны эколого-экономические параметры оценки ущерба от загрязнения окружающей природной среды техногенной сажей (табл.4-7).

Таблица I Изменение свойств системы: C-H₂0-0₂ (1:1:1) при P=0,1 МПа, T=500-2500К, ц=45,51 моль/кг, ММq=23,05 г/моль, Rq=364,94 Дж/(кг K), z=0,153

T,K	$V \cdot 10^2$, $M^3/K\Gamma$	S, кДж/(кг·К)	І, кДж/кг	U, кДж/кг	С'р·10⁴ґ\кДж (кг·К)	Ми·10³, Па·с	Lt'·10 ⁵ , Βτ/(м·Κ)	$\mathrm{Pr}^{2}\cdot10^{3}$
500	120,50	6,70	-8290,87	-8339,52	15768,9	2,08	17923,6	178,46
750	196,15	7,71	-7646,11	-7764,28	46905,2	3,04	195441	75,01
1000	380.39	10.52	-5153.48	-5420,45	37071,7	3.87	31148.6	460.8
1250	480.72	11,02	-4604,36	-4970,42	19159,6	4,5	«5355,8	561,08
1500	576,88	11.37	-4129,51	-4591,72 _	18912,2	5.08	17429.5	551.15
1750	673,06	11,66	-3655,82	-4214Д1	19041,1	5,63	19538,3	548,73
2000	769,49	11,92	-3173,3	-3828.08	19687.8	6,16	21648.5	559,79
2250	867,02	12.16	-2660,95	-3413,08	21620,7	6,66	31272.1	460,3
2500	968.14	12.41	-2067,94	-2920,63	26521	7.14	54644	346.58

Таблица 2 Изменение свойств системы: C-H20-02 (1:3:1) при P=0,1 МПа, T=500-2500К, ц=48.38 моль/кг, ММq=20,82 г/моль. $q\sim401.48~\rm{Дж/(кгK)}$. z=0.02

				о дж (та те).				
T,K	$\mathrm{V}\!\cdot\!10^2$, m $^3/\mathrm{kr}$	S, кДж/(кг·К)	І, кДж/кг	U, кДж/кг	С'р·10⁴г\кД ж (кг·К)	Ми·10³, Па·с	$\mathrm{Lt}^{\prime} \cdot 10^{5}, \ \mathrm{Br/(M \cdot K)}$	$ m Pr^{2}\cdot 10^{3}$
500	164,99	8,81	-10135,9	-10202,5	19916.9	1.97	20105,9	179,03
750	273,46	10,13	-9292,16	-9456,91	59014,2	2.93	201836	85,68
1000	415,09	11.58	-8058.84	-8350,17	24786,2	3,75	14456,4	642,15
1250	519,20	12,11	-7472,41	-7867,77	22980.5	4,41	16915	599.72
1500	623.04	12,53	-6900,61	-7399.81	22852.3	5,04	19476,2	591,14
1750	726,92	12,88	-6326.19	-6929.27	23172,5	5.63	22094.3	590.02
2000	831,09	13,19	-5736,72	-6443.92	24155,4	6,18	24722,1	604,1
2250	936,66	13,49	-5103,13	-5915,68	27041.6	6,71	35170,5	516.21
2500	1047,5	13,81	-4340,41	-5262,99	35425	7,22	66234,4	386.36

Таблица 3

Изменение свойств системы: C-H₂0-0₂ (1:5:1) при P=0,1 МПа, T=500-2500K, p=50,49 моль/кг, MMq=19,85 г/моль, Rq=419,81 Дж/(кг K), z=0

T,K	$V \cdot 10^2$, $M^3/K\Gamma$	S, кДж/(кг·К)	І, кДж/кг	U, кДж/кг	С'р·10 ⁴ г\кДж (кг·К)	Ми·10³, Па·с	Lt'·105, Br/(m·K)	Pr'·10³
500	184,06	9,651	-10951,6	-11025,9	19737,7	1,9	21503,9	174,59
750	303,63	11,012	-10082	-10264,9	52642,6	2,86	171658	87,66
1000	428,50	12,02	-9227,3	-9528,05	23616,2	3,67	13892,1	623,44
1250	535,68	12,55	-8637,2	-9045,12	23681,6	4,36	16735,4	617,33
1500	642,82	12,98	-8041,34	-8556,39	24025,2	5,01	19596,1	613,89
1750	750	13,36	-7433,89	-805612	24624,9	5,61	22469,8	615,04
2000	857,48	13,69	-6805,06	-7534,71	25866,6	6,18	25329,3	631,53
2250	966,53	14,01	-6122,53	-6960,99	29373,8	6,73	37237,2	530,75
2500	1082,01	14,37	-5276,68	-6229,68	40353,2	7,25	72604,7	402,97

Таблица 4

Техническая характеристика котлоагрегатов типа ДКВР-4/13

Котлоагрегаты	Н(м)	D(м)	V(м ³ /сек)	Trr (°C)	U (м/c)
ДКВР-4/13 (Зшт.)	23	0,6	9,271	174	3,2

Расчет ущерба

Параметры	Расчеты
Y	Y=y·G·f·M
f	$f = \frac{100}{100 + 3,15 \cdot 23} \cdot \frac{4}{1 + 3,2} = 0,55$
M	$J = \frac{100 + 3,15 \cdot 23}{100 + 3,15 \cdot 23} \cdot \frac{1 + 3,2}{1 + 3,2} = 0,33$
тсажа	M=A _i ·m,; m _{сажа} =С _{сажа} Q;
	а) мазут: $m_{casea}^{Mas.} = 42 \text{мг/м}^3 \cdot 9,271 \text{м}^3/\text{сек} = 389,38/\text{сек}$
Ү маз. Үсажа	$m_{ca)\kappa ca}^{Ma3}=389,38rac{\mathrm{M}\Gamma}{\mathrm{ce}\kappa}\cdotrac{1}{10^{9}\mathrm{M}\Gamma}\cdotrac{31557600\ \mathrm{ce}\kappa}{1\ \mathrm{год}}=12,29\ \mathrm{M/год}$
	$m_{casea}^{mas.} = 240 \cdot 12,29 \text{ м/год} = 2949,11 \text{ м/год}$
	$Y_{casea}^{mas.} = 3,36.4.0,55.2949,11=21799,83 \text{ сом/год}$
	б) водомазутная эмульсия (ВМЭ)
Ү ВМЭ.	$m_{casea}^{BM3.} = 22 \text{ мг/м}3.9,271 \text{ м}3/\text{сек}=203,96 \text{ мг/сек}$
ΔΥ	$m_{casea}^{BMS.} = 203,96 \frac{mc}{ce\kappa} \cdot \frac{1m}{10^9 mc} \cdot \frac{31557600 ce\kappa}{1 cod} = 6,44m/cod$

	$m_{casea}^{BM3} = 240.6,44 \text{ m/год} = 1544,77 \text{m/год}$							
	$Y_{casea}^{BM9.} = 3,36\cdot 4\cdot 0,55\cdot 1544,77 = 11418,96$ сом/год $\Delta Y = Y_{casea}^{M3.} - Y_{casea}^{BM9.}$;							
С маз. (мг/м ³)	тмаз. сажа _(т/год)	$C^{BM9}_{cama_{(M2/M^3)}}$	т _{сажа_(т/20д)}	Ү маз. сажа _(сом/год)	$Y_{ca o ca}^{BM9.}$	ΔΥ (сом/год)		
42	12,29	22	6,44	21799,83	11418,96	10380,87		

Заключение.

Выявлены источники загрязнения окружающей среды техногенной сажей котлоагрегатами средней и малой мощности типа ДКВР -4/13. Изучены процессы окисления техногенной сажи в парогазовой фазе, найдены спектры концентрационного распределения углеродсодержащих частиц в газовой фазе и показа

но снижение содержание сажи в газовой фазе при сжигании топлива в виде водотопливных эмульсий. Установлены изменения энергетических и вязкостных свойств компонентов системы С-Н2-О-О2 при различных значениях температуры соотношения потоков. газо-жидкостных Осуществлен анализ эмиссии техногенной сажи и предложены способы минимизации техногенной сажи в приземном слое атмосферного воздуха. Определены экологические и производственнохозяйственные стандарты котлоагрегатов средней и малой мощности типа ДКВР -4/13 и рассчитаны величины предотвращенного ущерба от загрязнения окружающей природной среды техногенной сажей.

Условные обозначения

С - рабочая концентрация, кг/м³; С* - равновесная концентрация, кг/м³; Ср'- удельная теплоемкость (равновесная), кДж/(кг-К); Ср'q-теплоемкость газо вой фазы (равновесная), кДж/(кг К); D_x - коэффициент диффузии газа в жидкости, м/с;

1 - полная энтальпия, кДж/кг; Lt - коэффициент теплопроводности, BT/(MK); Lt' теплопроводность, Bт/(м K); MMq - молярная масса газовой фазы, г/моль; Ми - коэффициент динамической вязкости, М – приведенная масса,; Па с; $P \Gamma^*$ - число Прандтля (равновесное) $P r_{\kappa}$ - газовая постоянная, Дж/(кг·К); S – энтропия, кДж/(кг·К); T – температура, К; U_r – скорость газа, м/с; U – полная внутренняя энергия, кДж/кг; V – удельный объем, $M^{3}/K\Gamma$; z — массовая доля конденсированных фаз; μ число молей, моль/кг; У – ущерб, сом/год; индексы: ж – жидкость; r – газ; р –равновесная.

Литература:

- Бакиров Ф.Г. и др. Образование сажи при горении гомогенных гексановоздушных смесей при давлениях до 1,5 МПа /Физика горения и взрыва. 1982. -№ 3. - С. 51-56.
- Лейте В. Определение загрязнений воздуха в атмосфере и на рабочем месте-Москва.1970 5. Борщев Д.Л., Воликов А.Н. Защита окружающей среды при эксплуатации котлов малой мощности, - М, 1987.
- 3. Роддатис К.Ф. Полтарецкий А.А. Справочник по котельным установкам малой производительности. М.: Энергоатомиздат. 1989.
- 4. Трусов -Б.Г. Моделирование химических и фазовых равновесий при высоких температурах- Москва, 1995.-43 с.

Рецензент: д.т.н. Татыбеков А.