## ТОПОЛОГИЯ И ГЕОМЕТРИЯ

## A.A.Borubaev

## COMPACTIFICATION OF UNIFORMILY CONTINOUS MAPPINS

УДК:515.12

In this paper the notion of compactification of a uniformly continuous mapping is introduced and some of properties are established.

The notion of compactification of continuous mappings has been introduced and studied in [3], [4]. A wider study of compactification of continuous mappings has been done in the paper of Pasynkov [1] and papers [2], [3], [4], [5], [6].

All considered uniform spaces are assumed to be separated and given in terms of coverings, mappings are uniformly continuous and topological spaces are Tychonoff.

**Definition 1.** Let  $f:(X,U) \to (Y,V)$  be a uniformly continuous mapping. A mapping  $cf:(cX,cY) \to (Y,V)$  is called compactification or uniformly perfect extension of the mapping f if following conditions are met: 1)  $X \subseteq cX$ ; 2)  $[X]_{cX} \subseteq cX$ ; 3)  $cf|_{X} = f$ ; 4) cf is a uniformly perfect map.

For two compactification  $c_1f:(c_1X,c_1U)\to (Y,V)$  and  $c_2f:(c_2X,c_2U)\to (Y,V)$  of a mapping  $f:(X,U)\to (Y,V)$ , as usually we set  $c_2f\geq c_1f$ , if there is a uniformly continuous mapping  $\varphi:(c_2X,c_2U)\to (c_1X,c_1U)$  such that  $c_2f=c_1f*\varphi$  and  $\varphi$  is an identity mapping on X.

The notions of uniformly perfect and complete mappings are introduced and investigated by the author in [7], [8], [9], [10].

Here are some necessary notions and statements.

Let  $f:(X,U) \to (Y,V)$  be a uniformly continuous mapping. A uniformity  $B \subseteq U$  is called a base of the mapping f, if for any cover  $\alpha \subseteq U$  there are a cover  $\beta \in V$  and a cover  $\gamma = B$  such that the cover  $f^{-1}\beta \wedge \gamma = \{f^{-1}B \cap \Gamma : B \in \beta, \Gamma \in \gamma\}$  is inscribed in the cover  $\alpha$ .

If B is a precompact uniformity, then the mapping f is called precompact [7],[10].

A mapping  $f:(X,U) \to (Y,V)$  is called to be *uniformly perfect* [7], if it is precompact and perfect in the topological sense.

A mapping  $f:(X,U) \to (Y,V)$  is called complete [9], [10] if every Cauchy filter F in (X,U) converges in (X,U) if its image fF converges in (Y,V).

Note that a mapping  $f:(X,U) \to (Y,V)$  is uniformly perfect if and only if it is both precompact and complete [10].

A mapping  $bf:(bX,bU) \to (Y,V)$  is called a completion of the mapping  $f:(X,U) \to (Y,V)$  (see [9], [10]) if the following conditions are met:

1)(X,U) is dense subspace of the uniform space (bX,bU); 2)  $f = bf|_x$ ; 3) the mapping bf is complete.

It should be noted that the completion of a precompact mapping is uniformly perfect [10].

**Lemma 1.** Let  $f:(X,U) \to (Y,V)$  be a uniformly continuous mapping. Then is a uniformity Up on X such that

- 1)  $U_n \subseteq U$
- 2) the mapping  $f:(X,U) \to (Y,V)$  is precompact;
- 3)  $U_p$  generates the same topology as U.

Among such infirmities there is maximal uniformity.

**Proof.** Let  $U_c$  be precompact uniformity contained in the uniformity U and generating the same topology as does U [11]. We denote by  $U_p$  the uniformity on X, generated by the system of converings  $U_c \wedge f^{-1}V\{\gamma \wedge f^{-1}\beta: \gamma \in U_c, \beta \in V\}$ . By the construction  $U_p \subseteq U$  and the mapping

 $f:(X,U_p) \to (Y,V)$  is precompact. Condition 3) of Lemma 1 is obvious. We show the exictence of maximal uniformity  $U_s$ , turning the mapping f to become precompact. To this end it's enough to take a maximal precompact uniformity  $U_m$  contained in U. We denote through  $U_s$  the uniformity generated by the system f covers  $U_m \wedge f^{-1}V$ . Then the uniformity  $U_s$  is the required one.

**Theorem 1.** Every uniformly continuous mapping  $f:(X,U) \to (Y,V)$  has at least one compactification.

**Proof.** by Lemma 1, there is a uniformity  $U_p$  on X contained in U and making the mapping  $f:(X,U_p)\to (Y,V)$  to be precompact. Let a mapping  $cf:(cX,cU)\to (Y,V)$  be complation of the mapping  $f:(X,U_p)\to (Y,V)$ , where  $f=cf\big|_X;[X]_{cX}=cX$  and cf is complete.

In [10] it is proved that the completion of a precompact map is a uniformly perfect map. Then the mapping cf is a uniformly perfect extension of the mapping f, i.e., the mapping cf is a compactification of the mapping f. Theorem 1 is proved.

If U is a maximal uniformity of a Tychonoff space X [11], then the theorem implies the following corollary.

**Corollary 1.** Every continuous mapping  $f:(X,U) \to (Y,V)$  of a Tychonoff space X into a Tychonoff space Y has at least one compactification.

This corollary in the class of spaces wider than the class of Tychonoff spaces is proved in [1], [2].

**Theorem 2.** Every uniformly continuous mapping  $f:(X,U) \to (Y,V)$  has maximal compactification.

**Proof.** By Lemma 1, there is a maximum uniformity  $U_s \subseteq U$ , making the mapping  $f:(X,U_s) \to (Y,V)$  precompact. Let  $sf:(sX,sU) \to (Y,V)$  be the completion of the mapping  $f:(X,U_s) \to (Y,V)$ . Then, as mentioned above, sf is uniformly perfect [10], i.e. sf is a compactification of the mapping  $f:(X,U) \to (Y,V)$ . We shall show that the compactification sf is the maximal compactification of the mapping f.

Let  $cf:(cX,cU) \to (Y,V)$  be an arbitrary compactification of the mapping  $f:(X,U) \to (Y,V)$ . We shall show that there exists a uniformly continuous mapping  $\varphi:(sX,sU) \to (sY,sV)$  such that  $sf=cf\varphi$ .

Actually, let  $i_X: X \to X$  be an identity mapping. Let  $U_s$  Us be a restriction of the uniformity  $_sU$  on X and  $U_c$  be a restriction of the uniformity  $_cU$  on X. Then  $U_c \subseteq U_s \subseteq U$ , and identity mapping  $i_X: (X, U_s) \to (Y, U_c)$  is uniformly continuous. We denote by  $\varphi$  the extension of  $i_X$  onto (sX, sU) and (cX, cU). It is easy to see that such an extension exists, it is uniformly continuous and  $sf = cf \cdot \varphi$ . Theorem 2 is proved.

Maximal compactification sf of the mapping f is called Samuel compactification of the mapping  $f:(X,U_s)\to (Y,V)$ .

If U is the maximal uniformity of a Tychonoff space X, then Theorem 2 implies the following corollary. **Corollary 2.** Among all compactifications of a continuous mapping  $f: X \to Y$  there is a maximal compactification.

This corollary in the class of spaces is proved in [1], [2].

Let  $f:(X,U) \to (Y,V)$  be uniformly continuous. Through  $U_s$  and  $V_s$  we denote precompact maximal uniformities, contained in the uniformities U and V respectively. Then the completions of uniform spaces  $(X,U_s)$  and  $(Y,V_s)$  through  $(\beta_s X,\beta U_s)$  and  $(\beta_s Y,\beta V_s)$ , respectively, and the extension of the mapping  $f:(X,U_s) \to (Y,V_s)$  on its completions  $(\beta_s X,\beta U_s)$  and  $(\beta_s Y,\beta V_s)$  are called Samuel compact extensions of uniform spaces (X,U) and (Y,V) respectively. If  $V_c$  is some precompact uniformity of the

space Y contained in V, then the completion of the space  $(Y,V_c)$  is denoted by  $(b_c Y,bV_c)$ , and the extension of the mapping  $f:(X,U_s)\to (Y,V_c)$  onto  $(\beta_s X,\beta U_s)$  and  $(b_c Y,bV_c)$  we denote as  $\beta_c f$ .

**Theorem 3**. Let  $f:(X;U) \to (Y;V)$  be a uniformly continuous mapping. Then the following conditions are equivalent:

- 1. A mapping f is uniformly perfect.
- 2. A mapping f is precompact and for any compact extension  $(b_c Y, bV_c)$  of a uniform space (Y; V) the mapping  $\beta_c f$  satisfies to the condition  $\beta_c f(\beta_s X \setminus X) \subseteq b_c Y \setminus Y$ .
- 3. A mapping f is precompact and the mapping  $\beta_s(\beta_s X \setminus \beta U_s) \rightarrow (\beta_s Y \setminus \beta V_s)$  satisfies  $\beta_c f(\beta_s X \setminus X) \subseteq b_c Y \setminus Y$ .
- 4. A mapping f is precompact and there is a compact extension  $(b_c Y, bV_c)$  of a uniform space (Y; V) such that, for the extension  $\beta_s f: (\beta_s X \setminus \beta \cup_s) \to (b_s Y \setminus bV_s)$  of the mapping f the inclusion  $\beta_c f$   $(\beta_s X \setminus X) \subseteq b_c Y \setminus Y$  is fulfilled.

**Proof.** Let us prove the implication  $1 \Rightarrow 2$ . Suppose that the mapping  $f:(X;U) \to (Y;V)$  is uniformly perfect. Then, by definition of uniform perfectness the mapping f is precompact. Let us consider the extension  $\beta_s f:(\beta_s X \setminus \beta \cup_s) \to (b_s Y \setminus b \cup_s)$  of the mapping  $f:(X,U_S) \to (Y,V)$ . We put  $Z = (\beta_c f)^{-1} Y$ . Let  $\tilde{f} = \beta_c f|_Z$ . Then  $\tilde{f}$  is a continuous extension onto Z of a perfect mapping f. But it is impossible to extend a perfect mapping  $f:(X,U) \to (Y,V)$  onto any Hausdorff space Z containing X as a dense subset (see. Lemma 3.7.14 from [11]). So Z = X. Consequently  $\beta_c f(\beta_s X \setminus X) \subseteq b_c Y \setminus Y$ .

The implications 2)  $\Rightarrow$  3) and 3)  $\Rightarrow$  4) are obvious. Implication 4)  $\Rightarrow$  1) follows from the following statement:

If  $g: Z \to P$  is a perfect mapping, then for any  $B \subset P$  the restriction  $g_B: g^{-1}B \to B$  is perfect (see Prop. 3.7.4 from [11]).

Actually, if we set  $Z = \beta_s X$  and  $P = b_s Y$ , B = Y,  $g = \beta_c f$  then the condition 4) implies  $(\beta_c f)^{-1} Y = X$  and that  $f: X \to Y$  is a perfect mapping. Given that f is precompact, we conclude that the mapping  $f: (X,U) \to (Y,V)$  is uniformly perfect. Theorem 3 is proved.

Note that if U is a precompact uniformity them any uniformly continuous mapping  $f:(X,U) \to (Y,V)$  is precompact.

Taking this into account and assuming that U is a maximal precompact uniformity of a Tychonoff space X, then Theorem 3 implies well-known theorem of Henriksen and Isbell [12] in the form, contained in the book [10].

- **Corollary 3.** . For any continuous mapping  $f:(X,U) \rightarrow (Y,V)$  the following conditions are equivalent:
  - 1) A mapping f is perfect.
- 2) For any compactication the extension  $F_c: \beta X \to {}_c Y$  of a mapping f satisfies  $F_g: (\beta X \setminus X) \subseteq {}_c Y \setminus Y$ .
  - 3) Extension  $F_{\beta}: \beta X \to \beta Y$  of a mapping f satisfies  $F_{\beta}: (\beta X \setminus X) \subseteq \beta Y \setminus Y$
- 4) There is a compactication  $_{c}Y$  , such that the extension  $F_{c}:\beta X\to _{c}Y$  of a mapping f satisfies  $F_{c}:(\beta X\setminus X)\subseteq _{c}Y\setminus Y$ .

The set of all compactications of a uniformly continuous mapping  $f:(X,U)\to (Y,V)$  will be denoted as K(f). The set K(f) is partially ordered by the order "  $\leq$  ", which we introduced earlier. A partially ordered set  $(K(f);\leq)$  is not empty (Theorem 1) and has a maximal element (Theorem 2).

We denote by C(f) the set of all such uniformities  $U_P$  of a space X that, rstly UP U, and in the second a mapping  $f:(X,U_S)\to (Y,V)$  is precompact and uniformly continuous. The set C(f) is partially ordered by the inclusion "  $\subseteq$  ". A partially ordered set  $(C(f);\subseteq)$  is not empty and has a maximal element (Lemma 1).

**Theorem 4.** There is an isomorphism  $G:(K(f),\leq)\to(C(f),\subseteq)$  between the partially ordered sets  $(K(f),\leq)$  and  $(C(f),\subseteq)$ .

**Proof.** Suppose that  $C(f) \in K(f)$ , i.e.  $cf:(cX,cU) \to (Y,V)$  is a uniformly perfect extension of the mapping  $f:(X,U) \to (Y,V)$ . Let Uc be a restriction of the uniformity cU on X. Then  $U_c \subseteq U$  and the mapping  $f:(X,U_S) \to (Y,V)$  is uniformly continuous and precompact. Consequently,  $U_P \in P(f)$ . Let  $G(cf) = U_P$ . It is easy to verify that the mapping  $G:(K(f),\leq) \to (C(f),\subseteq)$  is an isomorphism. Theorem 4 is proved.

Let  $U_m$  be a maximal uniformity of a space X and Y be a singleton. Then it turns K(f) to be the set of all compact extensions of the space X and C(f) becomes the set of all precompact uniformities C(X) of the space X.

Then the partial order " $\leq$ " will coincide with the natural order between compact extensions of the space X, and the inclusion " $\subseteq$ " will coincide with the natural order of "weak" and "strong" uniformity of the space X. Then the theorem implies well-known statement [11].

**Corollary 4.** Posets  $(K(f), \leq)$  and  $(C(f), \subseteq)$  are isomorphic.

Let  $f:(X,U)\to (Y,V)$  be a uniformly continuous mapping. The point  $y\in Y$  is called the point of perfectness (see [5], [6]), if firstly  $f^{-1}y$  is compact, in the second, for every neighborhood G of  $f^{-1}y$  there exists a neighborhood O of  $y\in Y$  such that  $f^{-1}O\subseteq G$ . The set of all points of perfectness of the mapping f we denote by P(f) (see. [5], [6]).

**Theorem 5**. Let  $f:(X,U) \rightarrow (Y,V)$  be a uniformly continuous mapping,  $sf:(sX,sU) \rightarrow (Y,V)$  be a Samuel compactification of the mapping f.

Then 
$$sf:(sX \setminus X) \subseteq Y \setminus P(f)$$

**Proof.** By construction  $sf:(sX,sU) \to (Y,U)$  is a uniformly perfect mapping. Then the mapping  $f_0 = \left(f^{-1}P(f), U_{f^{-1}P(f)}\right) \to \left(P(f), V_{P(f)}\right)$  is uniformly perfect, where  $f_0 = sf \Big|_{f^{-1}P(f)} = f \Big|_{f^{-1}P(f)}$  and  $U_{f^{-1}P(f)}$ ,  $V_{P(f)}$  are restrictions of the uniformities sU and V on  $f^{-1}P(f)$  and P(f) respectively. Then  $f_0$  is uniformly perfect. Therefore,  $f^{-1}P(f)$  is a closed subset in sX ([11]) and  $f^{-1}P(f) \subseteq X$ .  $y \in sf(sX \setminus X)$ .

Then there is a point  $x \in sX \setminus X$  such that sf(x) = y and  $x \notin X$ . From the perfectness of sf, and [X]sX = sX it follows that  $[f^{-1}y]_{sx} = sf^{-1}y$ . But y can not belong to P(f), as  $f^{-1}y$  is complete

and  $f^{-1}y \subset f^{-1}P(f) \subset X$  with f(x) = y. This contradicts the fact that  $x \notin X$ . Consequently,  $y \in Y \setminus P$ . Theorem 5 is proved.

**Remark 1.** If in Theorem 5 the mapping f is surjective, then the equality

$$sf:(sX \setminus X) = Y \setminus P(f) \tag{*}$$

holds.

**Theorem 6.** Let  $f:(X,U) \rightarrow (Y,V)$  be a uniformly continuous mapping. Then the inclusion  $\beta_s f:(\beta X \setminus X) \setminus (\beta_s Y \setminus Y) \subseteq Y \setminus P(f)$  holds.

**Proof.** Let  $y \in \beta_s (\beta X \setminus X) \setminus (\beta_s Y \setminus Y)$ . Then  $y \notin \beta_s Y \setminus Y$  and  $y \in Y$ . There is a point  $x \in \beta_s X \setminus X$  such that  $\beta_s f(x) = y$ , and  $x \notin X$ . Then  $x \in f^{-1}P(f) = (\beta_s)^{-1}P(f)$ . So  $\beta_s f(x) = y \in Y \setminus P(f)$ .

Remark 2. If in Theorem 6 the mapping f is surjective, then thee quality

$$\beta_{s} f(\beta_{s} X \setminus X) \setminus (\beta_{s} Y \setminus Y) = Y \setminus P(f)$$
(\*\*)

holds.

A global research of points of closedness and perfectness of continuous mappings were carried out in [5], [6] and there were proved the equalities of type (\*) and (\*\*).

## References

- 1. Pasynkov B.A. On extending onto mappings some concepts and statements concerning spaces. In the collection "Mappings and functors". Moscow State University, 1984 p. 72 102. (in Russian)
- 2. Ulyanov V.M. On compactications of countable character and absolutes. -Matem. Sb. 1975, 98, 2, p. 223 254. (in Russian)
- 3. Cain G.L. Compactications of mappings. Proc. Amer. Math. Soc. 1969, 23, 2, p. 298 303.
- 4. Whyburn G. T. A unied space of mappings. Trans. Amer. Soc., 1953, 74, p. 344 350.
- 5. Ormotsadze R.N. On points of closedness of mapping. Comment. Academy of Sciences of the GSSR, 135, 2, p. 277 280.(in Russian)
- 6. Ormotsadze R.N. On perfect maps. Comment. Academy of Sciences of the GSSR, 1985, 119, 1, p. 25 28.(in Russian)
- 7. Borubaev A.A. Absolutes of uniform spaces. Usp. Mat. Nauk, 1988, 43, no.1, p. 193 194. (in Russian)
- 8. Borubaev A.A. Uniformly perfect mappings. Reports Bolg. Academy of Sciences, 1989, 42, 1, p. 19 23. (in Russian)
- Borubaev A.A. Geometry of uniformly continuous maps. Comment. Academy of Sciences of the GSSR, 1990, 137, 3, p. 497 -500. (in Russian)
- 10. Borubaev A.A. Uniform topology. Edited in "Ilim", Bishkek, 2013. (in Russian)
- 11. Engelking R.General topology. Edited in "Mir", Moscow, 1986. (in Russian)
- 12. Henriksen M., Isbell J.R. Some properties of compactications. Duke Math. J. 1958, 25, p. 83 106.

Рецензент: д.ф.-м.н., профессор Керимбеков А.