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TOIIOJIOIUA U TEOMETPUA

A.A.Borubaev

COMPACTIFICATION OF UNIFORMILY CONTINOUS MAPPINS
VIK:515.12

In this paper the notion of compactification of a uniformly continuous mapping is introduced and some
of properties are established.

The notion of compactification of continuous mappings has been introduced and studied in [3], [4]. A
wider study of compactification of continuous mappings has been done in the paper of Pasynkov [1] and papers

(2], [3], [4], [5], [6].
All considered uniform spaces are assumed to be separated and given in terms of coverings, mappings are
uniformly continuous and topological spaces are Tychonoff.
Definition 1. Let f:(X,U)—>(Y,V) be a uniformly continuous mapping. A mapping
cf :(cX,cY)—> (Y,V) is called compactification or uniformly perfect extension of the mapping f if
Jollowing conditions are met: 1) X < ¢X; 2) [X], <cX; 3) cf|X = [, 4) cf is auniformly perfect map.
For two compactification ¢, f :(¢,X,cU)— (Y,V) and c,f :(c,X,c,U)—(¥Y,V) of a mapping
(X, U)—> (Y,V), as usually we set c,f >c f, if there is a uniformly continuous mapping
p:(c,X,c,U)—= (¢, X,cU) suchthat ¢, f =c,f*@ and ¢ is an identity mapping on X .
The notions of uniformly perfect and complete mappings are introduced and investigated by the author in

[71, [8], [9], [10].

Here are some necessary notions and statements.
Let f:(X,U)— (Y,V) be a uniformly continuous mapping. A uniformity B c U is called a base of

the mapping £, if for any cover & c U there are a cover f €V and a cover ¥ = B such that the cover

f'BAy={f"BNT:Be B,T ey} isinscribed in the cover « .

If B is a precompact uniformity, then the mapping f is called precompact [7],[10].

A mapping f :(X,U) - (Y,V) is called to be uniformly perfect [7], if it is precompact and perfect in
the topological sense.

A mapping f:(X,U)— (Y,V) is called complete [9], [10] if every Cauchy filter F' in (X,U)
converges in (X,U) ifits image fF convergesin (Y,V).

Note that a mapping f :(X,U) — (Y,V') is uniformly perfect if and only if it is both precompact and
complete [10].

A mapping bf : (bX,bU) — (Y,V) is called a completion of the mapping f :(X,U) — (Y,V) (see
[9], [10]) if the following conditions are met:

1)(X,U) is dense subspace of the uniform space (bX,bU); 2) f =bf
complete.

It should be noted that the completion of a precompact mapping is uniformly perfect [10].
Lemma 1. Let f:(X,U)— (Y,V) be a uniformly continuous mapping. Then is a uniformity Up on

X such that
nu = U
2) the mapping [ :(X,U)— (Y,V)is precompact;

> 3) the mapping bf is

3) U, generates the same topology as U .

Among such infirmities there is maximal uniformity.
Proof. Let U, be precompact uniformity contained in the uniformity U and generating the same

topology as does U [11]. We denote by U, the uniformity on X', generated by the system of converings
UANfViganf'B:yeU,,BeV}. By the construction U,cU and the mapping
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S (X, U,)—>(Y,V) is precompact. Condition 3) of Lemma 1 is obvious. We show the exictence of maximal
uniformity U, turning the mapping f to become precompact. To this end it’s enough to take a maximal
precompact uniformity U, contained in U . We denote through U the uniformity generated by the system f

covers U, A f 'V . Then the uniformity U is the required one.

Theorem 1. Every uniformly continuous mapping [ (X, U )—>Y,V) has at least one
compactification.
Proof. by Lemma 1, there is a uniformity U , on X contained in U and making the mapping

S:(X,U,)—>(,V) to be precompact. Let a mapping c¢f :(c X,cU)— (¥,V) be complation of the
mapping f:(X,U,) —>(¥,V), where f = cf|X;[X]CX =cX and cf is complete.

In [10] it is proved that the completion of a precompact map is a uniformly perfect map. Then the mapping
cf is a uniformly perfect extension of the mapping f°, i.e., the mapping c¢f is a compactification of the

mapping f . Theorem 1 is proved.

If U is a maximal uniformity of a Tychonoff space X [11], then the theorem implies the following
corollary.
Corollary 1. Every continuous mapping f :(X,U) — (Y,V) of a Tychonoff space X into a Tychonoff

space Y has at least one compactification.
This corollary in the class of spaces wider than the class of Tychonoff spaces is proved in [1], [2].
Theorem 2. Every uniformly continuous mapping f :(X,U) — (Y,V') has maximal compactification.

Proof. By Lemma 1 , there is a maximum uniformity U, U, making the mapping
f:(X,U,)—>(Y,V) precompact. Let sf: (sX,sU)—> (Y,V) be the completion of the mapping
f:(X,U,) > (Y,V). Then, as mentioned above, sf is uniformly perfect [10], i.e. sf* is a compactification
of the mapping f :(X,U)— (Y,V). We shall show that the compactification sf* is the maximal
compactification of the mapping f .

Let ¢f :(c X,cU) — (Y,V') be an arbitrary compactification of the mapping f :(X,U) - (¥,V). We
shall show that there exists a uniformly continuous mapping ¢ : (s X,sU) — (sY,sV) such that sf =cf¢p.

Actually, let i, : X — X be an identity mapping. Let U Us be a restriction of the uniformity ‘U on
X and U, be a restriction of the uniformity .U on X . Then U, cU, c U, and identity mapping
Iy :(X, US) —> (Y, Uc) is uniformly continuous. We denote by ¢ the extension of i, onto (SX, SU)

and (cX , cU ) . It is easy to see that such an extension exists, it is uniformly continuous and sf =cf -@.

Theorem 2 is proved.
Maximal compactification sf* of the mapping f is called Samuel compactification of the mapping

(X, U)—> (V).
If U is the maximal uniformity of a Tychonoff space X , then Theorem 2 implies the following corollary.
Corollary 2. Among all compactifications of a continuous mapping f:X — Y there is a maximal

compactification.
This corollary in the class of spaces is proved in [1], [2].

Let f:(X,U)— (Y,V) be uniformly continuous. Through U, and V, we denote precompact maximal

uniformities, contained in the uniformities U and V respectively. Then the completions of uniform spaces
(X,U,) and (Y,V,) through (B.X,BU,) and (B.Y,V.), respectively, and the extension of the mapping

f:(X,U)—>(X,V.) on its completions (BX,BU.) and (BY,BV,) are called Samuel compact

extensions of uniform spaces (X,U) and (Y,V) respectively. If V. is some precompact uniformity of the

c
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space Y contained in V', then the completion of the space (Y,V.) is denoted by (b, Y,bV), and the

extension of the mapping f :(X,U,) = (Y,V.) onto (B.X,LU,) and (b.Y,bV.) we denote as S, f .
Theorem 3. Let f : (X; U) - (Y; V) be a uniformly continuous mapping. Then the following

conditions are equivalent:
1. A mapping f is uniformly perfect.

2. A mapping f is precompact and for any compact extension (ch ,ch) of a uniform space (Y ; V)
the mapping f.f satisfies to the condition B.f ( BX\X ) cbY\Y.

3. A mapping fis precompact and the mapping B,(BX\BU,)—> (B, Y\BV,) satisfies B.f
(BX\X)chY\Y.

4. A mapping f is precompact and there is a compact extension (ch ,bVC) of a uniform space (Y ; V)
such that, for the extension B.f:(BX\BU,)— (b, Y\bV,)of the mapping f the inclusion f.f
(BX\X)cbY\Y is fulfilled.

Proof. Let us prove the implication 1 = 2. Suppose that the mapping 1 : (X ; U ) - (Y ; V) is

uniformly perfect. Then, by definition of uniform perfectness the mapping f is precompact. Let us consider
the extension /S f: (,BSX\,BUS) - (bs Y\bU, ) of the mapping f :(X,US )—) (Y,V). We put
Z= ( B.f )71 Y . Let f~ =B.f|,. Then f is a continuous extension onto Z of a perfect mapping f . But it is

impossible to extend a perfect mapping f :(X , U )—) (Y , V) onto any Hausdorff space Z containing X as a

dense subset (see. Lemma 3.7.14 from [11]). So Z = X. Consequently f.f (ﬂSX\X) cbY\Y.

The implications 2) = 3) and 3) = 4) are obvious. Implication 4) = 1) follows from the following
statement:

If g:Z — P is a perfect mapping, then for any B P the restriction g, : g~'B — Bis perfect (see
Prop. 3.7.4 from [11]).

Actually, ifweset Z=f Xand P=bY,B=Y,g = ./ thenthe condition 4) implies (ﬂcf)_l Y=X
and that f: X — Y is a perfect mapping. Given that f is precompact, we conclude that the mapping
f :(X U )—) (Y , V) is uniformly perfect. Theorem 3 is proved.

Note that if U is a precompact uniformity them any uniformly continuous mapping f :(X U ) - (Y , V)

is precompact.

Taking this into account and assuming that U is a maximal precompact uniformity of a Tychonoff space
X, then Theorem 3 implies well-known theorem of Henriksen and Isbell [12] in the form, contained in the
book [10].

Corollary 3. . For any continuous mapping f:(X,U)—)(Y,V) the following conditions are

equivalent:
1) A mapping f is perfect.
2) For any compactication the extension F, :pX — Y of a mapping [ satisfies

Fy:(BX\X)c Y\Y .

3) Extension F,: BX — BY of a mapping f satisfies Fy :(ﬂX\X) c pY\Y

4) There is a compactication Y , such that the extension F,:[BX — Y of a mapping [ satisfies
F:(fX\X)c Y\Y.
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The set of all compactications of a uniformly continuous mapping f :(X U )—) (Y , V) will be denoted
as K ( f ) . The set K ( f ) is partially ordered by the order " < ", which we introduced earlier. A partially
ordered set (K ( f ) ;<) is not empty (Theorem 1) and has a maximal element (Theorem 2).

We denote by C ( f ) the set of all such uniformities U, of a space X that, rstly UP U, and in the second
a mapping [ :(X ,Us )—) (Y , V) .is precompact and uniformly continuous. The set C ( f ) is partially ordered

by the inclusion " < ". A partially ordered set (C ( f ) ;) is not empty and has a maximal element (Lemma

).
Theorem 4. There is an isomorphism G : (K ( f ) ,S) - (C ( f ) ,g) between the partially ordered sets

(K(f)-) and (C(f).<).
Proof. Suppose that C(f) e K(f),i.e. ¢f :(cX,cU)— (¥,V)is a uniformly perfect extension of the
mapping f :(X U )—) (Y , V) . Let Uc be a restriction of the uniformity ¢U on X . Then U, cU and the

mapping f :(X ,Us )—) (Y ,V) is uniformly continuous and precompact. Consequently, U, € P(f) . Let
G(Cf) =U, . ltis easy to verify that the mapping G : (K(f),S) - (C(f) ,g) is an isomorphism. Theorem
4 is proved.

Let U,, be a maximal uniformity of a space X and Y be a singleton. Then it turns K ( f ) to be the set
of all compact extensions of the space X and C ( f ) becomes the set of all precompact uniformities C (X )

of the space X .
Then the partial order "< " will coincide with the natural order between compact extensions of the space
X, and the inclusion " < " will coincide with the natural order of "weak" and "strong" uniformity of the

space X . Then the theorem implies well-known statement [11].

Corollary 4. Posets (K ( f ) ,<)and (C ( f ) ,C) are isomorphic.

Let f :(X U )—) (Y ,V) be a uniformly continuous mapping. The point y € Y is called the point of
perfectness (see [5], [6]), if firstly f - y is compact, in the second, for every neighborhood G of f - y there
exists a neighborhood O of y € Y such that f ~'O0 c G . The set of all points of perfectness of the mapping f
we denote by P(f) (see. [5], [6]).

Theorem 5. Let | :(X,U)—) (Y,V) be a uniformly continuous mapping, Sf : (SX,SU) - (Y, V) be
a Samuel compactification of the mapping f .

Then s/ :(sX\X) = Y \P(f)

Proof. By construction sf :(SX , SU) —>(Y U ) is a uniformly perfect mapping. Then the mapping

fo= (f—lp(f),Uf,IP(f)) - (P(f),VP(/.)) is uniformly perfect, where f, =sf

Uf"P(f) ’ VP(f)

f, is uniformly perfect. Therefore, f_lP(f) is a closed subset in sX ([11]) and f_lP(f) cX.
yesf (SX \X ) :
Then there is a point x € sX \ X such that s/ (x) = y and x & X . From the perfectness of s/, and

/"‘P(f)zf |/”‘P(.f) and

are restrictions of the uniformities sU and ¥V on f~'P ( f ) and P ( f ) respectively. Then

[X]SX = sX it follows that [f_ly} = sf~'y. But y can not belong to P(f) ,as f'yis complete
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and f'yc f'P ( f ) cX with f (x) = y. This contradicts the fact that x¢& X . Consequently,
y €Y\ P.Theorem 5 is proved.

Remark 1. [fin Theorem 5 the mapping f is surjective, then the equality

sf :(sX\X)=Y\P(f) (*)
holds.
Theorem 6. Let f:(X,U)—)(Y,V) be a uniformly continuous mapping. Then the inclusion

Bf(BX\X)\(BY\Y)Y\P(f) holds.
Proof. Let yeﬂs(ﬂX\X)\(,BsY\Y) Then y¢ BY\Y and y e Y . There is a point x € SX\ X
such that £, f(x) =y, and x ¢ X . Then xefﬁlP(f):(ﬂS)qP(f).So ,Bsf(x)zer\P(f).

Remark 2. Ifin Theorem 6 the mapping fis surjective, then thee quality

,Bsf(ﬂsX\X)\(IBSY\Y)ZY\P(f) (*%)
holds.

A global research of points of closedness and perfectness of continuous mappings were carried out in [5],
[6] and there were proved the equalities of type (*) and (**).
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